
Animating OPL WorkshopAnimating OPL WorkshopAnimating OPL WorkshopAnimating OPL WorkshopAnimating OPL WorkshopAnimating OPL WorkshopAnimating OPL WorkshopAnimating OPL WorkshopAnimating OPL Workshop
An addendum to the recent
programming tutorial, by
Damian Walker

Over the course of the Animating OPL
tutorial I've received quite a bit of feedback.
One question was raised about the speed of
drawing the background, which is quite slow.
The reason for this is that I forgot about the
gPATT statement when writing the tutorial!
You can use it to speed up the drawing of the
background immensely, by replacing the
DrawGrid procedure with this simpler and
more efficient alternative:

PROC DrawGrid:
LOCAL grid%
grid%=

�

� gLOADBIT("\Bouncer\Grid.mbm")
gUSE 1
gPATT grid%,gWIDTH,gHEIGHT,3
gCLOSE grid%

ENDP

The gPATT statement simply fills an area of
the current drawable with repetitions of the
drawable grid%. The area is defined in size
by gHEIGHT and gWIDTH, with the current
drawing position at its top left. To fill a
smaller area, you would first use gAT, then
reduce the size.

There are further speed improvements
that could be made, by creating a temporary
drawable, drawing the grid on that, and
copying the whole thing to the screen. This
works because individual draws to the screen
are slower than to a bitmap. But I'll leave it
to you to experiment with such techniques.

Another criticism of the Bouncer
program is that it's stuck in the \Bouncer

folder. While it can be moved to any drive, if
you prefer to develop within another folder,
or if you want to develop a full-blown
application in \System\Apps\Bouncer, then all
the file names would need changing. The
way around this is to use the PARSE$ and
CMD$ facilitiy of OPL. The following lines
should be inserted in the Bouncer procedure,
above the call to DrawGrid:

GLOBAL path$(255),off%(6)
path$=PARSE$(CMD$(1),

�

� CMD$(1),off%())
path$=LEFT$(path$,off%(4)-1)

The CMD$ function returns information
about the path of the current program. The
PARSE$ function uses it to find the path of
the program and its files, which are stored in
path$. Now you can change all the
references to the Bouncer folder to use path$
instead, as in the example taken from the
DrawGrid procedure:

grid%=gLOADBIT(path$+

�

� "Grid.mbm")

There are lines to change in the LoadBall
procedure as well. Readers who are familiar
with the SETPATH statement, which in
conjunction with CMD$ would allow us to
load files without specifying a path at all, will
be wondering why I haven't used that instead.
The reason is simple: BITMAPLOAD&
doesn't honour it, and still tries to load files
from the root folder if no path is specified.

That rounds off all the issues I am aware
of with regard to the tutorial. If you have any
further queries about it, they'll be welcome at
the usual email address. Next month will see
the start of a new programming tutorial,
where Bouncer is amended to respond to
keyboard input.

I hope the keenest readers accept my
apologies for the lateness of this issue: work
and illness have both pushed me past the
usual deadline, but EPOC Entertainer isn't
about to fall by the wayside yet!

Last month saw the end of the first
programming tutorial, Animating OPL, which
has been a feature of EPOC Entertainer since
the very beginning. This has been very
popular, and I intend to make games
programming a permanent feature of the
magazine. One of the strengths of the EPOC
platform, which still gives it an advantage
over modern PDA machines, is the presence
of a built-in, powerful, but easy to use
programming language on most models. OPL
is easily capable of producing professional
quality adventure, RPG, strategy and board
games, and with a bit of care, even fast action
games are possible. I hope in future issues to
bring the programming tutorials to a level
where good quality games can be written, and
eventually a programming competition might
result if there is enough interest. Before
moving on to a new tutorial, I've included
some corrections and improvements to
Animating OPL.

This month sees the last of the head-to-
head series on Connect 4 games, The Right
Connections. I'm not sure whether there'll be
any more such head-to-head comparisons.
What do you, the readers think? Are there
any more collections of similar games that
you'd like to see given this treatment? Or do

you think it gets monotonous to have the
same type of game reviewed month after
month? Would you prefer to see more one-
off reviews? I'd be interested to hear from
you on this, so please do get in touch at the
email address below.

Another one-off article appears this
month, about adventure games: specifically,
adventure games using the FrotzS5
interpreter, of which there are more than 400.
This alone more than equals the number of
native EPOC games I know about. While I'm
not keen to do features on particular non-
EPOC or multi-platform games, you can
expect to see general articles about running
such games in this and future versions of
EPOC Entertainer. Features on Java games,
or on obtaining and running games under
emulators such as Z80, E32Frodo, EMAME
and EgnuBoy may well make an appearance.
But don't expect to see detailed information
about the games themselves; this is more a
subject for magazines and web sites about
those emulated machines.

I hope you enjoy this issue of EPOC
Entertainer. I'm always interested to hear
about what you think about each issue. If you
have any comments, requests, or offers of
help, then please do get in touch at the usual
address!

entertainer@snigfarp.karoo.co.uk

In Search of AdventureIn Search of AdventureIn Search of AdventureIn Search of AdventureIn Search of AdventureIn Search of AdventureIn Search of AdventureIn Search of AdventureIn Search of Adventure
A look at text adventure games
on the EPOC platform, by
Damian Walker

In the late 1970s and early 1980s, computer
graphics were very basic, and some computers
had no graphics at all. One type of game thrived
in this environment: the text adventure. These
games would tell a story in which the player was
involved; after each paragraph it was the player
who chose the direction of the story, with typed
commands such as “go north” or “kill the
goblin”. Nowadays these games are often called
interactive fiction. EPOC has few games of this
type: Castle from Widget Software and Grave
Robber by Andy Payndz are examples.
Graphical adventure games like Darren Prescott's
Castle III have been more numerous and popular
on the EPOC platform.

But there is a way that EPOC gamers can
have access to a wider range of text adventures:
the adventure interpreter. This is a native EPOC
program that reads the data files of adventures
released for other platforms, like the PC. Some
companies released series of these adventure
games, all using the same format for their data, so
a typical adventure interpreter can allow play of a
large number of games. I will concentrate on one
such program in this article: FrotzS5.

FrotzS5 is an interpreter for playing
Infocom adventures, one of the more well known
being Zork. The interpreter is easy to install,
being in the form of two SIS files. These are
installed in the normal way. FrotzS5 is not
document-based, so you can't load an adventure
by clicking on it in the system screen.
Unfortunately, you can't load a saved game in
that way either: in both cases you must load
FrotzS5 from the extras bar, and load the
adventure or saved game from within the
program.

To get any fun from FrotzS5, you need to
download an adventure game file. A good place
to start is the site http://ifarchive.org/ which has
its own downloadable files, and links to other
interesting sites. The adventures for FrotzS5 are
in the if-archive/games/zcode directory of the
site, and have extensions .z1 through .z8. The
FrotzS5 documentation states that some games
with the extension .z6 rely on graphics, and may
not work. To run a game, simply download it
somewhere onto your EPOC machine. Then
from the FrotzS5 main screen, select Open Story,
and locate the game file with the file browser.
The adventure's introductory text will appear and
you're ready to play.

FrotzS5 is a very simple program to use,
though it has a few features to ensure that reading
the screen is comfortable. You can turn bold on
and off, show or hide the toolbar, and change the
text size using the zoom buttons. The display is
automatically configured to fit in the size of your
computer's screen, so FrotzS5 runs very well on
anything from the Osaris to the netBook.

There are other interpreters: Hugo,
Magnetic and TADS being available for EPOC.
However, these other interpreters lack FrotzS5's
ease of installation and use, being straight ports
of desktop software that do not use the EPOC
interface. In fact, I had much trouble getting any
of them to play a game reliably, so I would
recommend them only to those find wrestling
with software an entertaining adventure in itself.

It seems that the appeal of this type of game
will be timeless. While more graphical games
have pushed the text adventure out of fashion in
mainstream games, no graphics can improve
upon those images that form themselves in the
imagination of the player, upon reading a well-
written description of the places and creatures
seen in a typical adventure game.

Program FrotzS5
Author Frédéric Bouvry
URL www.tucows.com/preview/11282

The Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right Connections
The last in the head to head
comparison series of Connect
4 games, by Damian Walker

It seems a little unfair to put Puissance4 in a
head-to-head with the other programs in this
series, because the program is self-
confessedly unfinished. As well as a very
rudimentary feature set, the game suffers
from a lack of artificial intelligence. There is
a computer player, but it moves randomly
and makes no attempt to block your rows of
four.

As it stands, the program offers simple
graphics, but no sound. It plays a nearly
standard game: 7 columns by 5 rows, rather
than the more usual 6 rows. There are
virtually no other features: the game works,
but is unplayable without a human opponent
due to the lack of a coherent computer player.

So why cover it here? Firstly, for
completeness—it does exist, after all.
Secondly, I wanted to highlight its existence
for the very good reason that it's supplied
with source code. So anyone familiar with
OPL can use this game as a starting point for
a more complete version. For that reason
alone, it's worth a look.

Conclusion

This has been a very mixed bag of programs
to review, even though they all play the same
game. While each program had its own
merits, two stand out from the others: Power4
and Four In A Line. Power4 has its
interesting rules variations, which allow to
create what amounts to a different game. But
the professional presentation of Four In A
Line, and its extensive feature set. Other
games have their own things to offer: 4Play
with its colour graphics, Connect 4's use of
audio, and Puissance 4 with its source

Rank Game URL
1st Four In A Line http://zingmagic.thezpace.com/home/zview///5
2nd Power4 http://dcabuzel.free.fr/
3rd Connect 4 http://www.bjv.btinternet.co.uk/
4th 4Play http://www.psionplace.com/software/series5/4Play-2001-7-11-psion-series5.html
5th Puissance4 http://dcabuzel.free.fr/

4Play Connect4 4InALine Power4 Puissance4
2+ lines to win �

Difficulty levels 3 4 3 4
Help Dialog Full Full
Hint �

Running score �

Save game �

Starting player � � �

Take back move �

Timer �

